Week 14: Enzymes and Food - Foundational Health

Enzymes are substances which make life possible. They are needed for every chemical reaction that occurs in our body. When it gets to the point that you can't make certain enzymes, then your life ends.

This macabre statement is an excerpt from a long interview with Dr. Edward Howell, who is considered one of America's pioneering biochemists and nutrition researchers. While his colleagues were studying vitamins and minerals, Dr. Howell spent his 50-year career strictly researching enzymes, identifying them via analogy - as early as the 1930's - as the body's 'work force'. In his words, 'You may have all the necessary building materials and lumber [his analogy for the vitamins and minerals that his colleagues were studying], but to build a house with them you need workers.' The results of his research, much of which still frames the scientific community's understanding of enzymes today, was the field of enzyme therapy

But just what are these tiny construction workers, and why haven't we heard more about them? If they're so central to life, why isn't everyone talking about them?

First, we will look briefly at how modern medical science has judged Dr. Howell's research, before getting into 'enzyme basics', including where prevailing nutritional dogma is split over his ultimate conclusion.

Encyclopedia.com's defines enzyme therapy as 'a plan of dietary supplements of plant and animal enzymes used to facilitate the digestive process and improve the body's ability to maintain balanced metabolism.'  It goes on to say that in traditional medicine, enzyme supplements are often prescribed for patients suffering from digestion-related diseases, such as celiac disease, Gaucher's disease, diabetes and cystic fibrosis. If you have any of these, there's a good chance your doctor has prescribed supplements. However, the entry then lists twenty-seven other ailments that 'can be treated by enzyme therapy', from AIDS to obesity to colitis to cancer to hepatitis to gastritis. Beyond ailments of the digestive system, the efficacy of enzyme therapy to the other modern ailments that proliferate today - like cancer, obesity, heart disease, food allergies and autoimmune diseases - are a hotly debated topic between thoroughly western practitioners, who largely favor the drug-and-technology approach of 'evidence-based medicine', and their eastern holistic counterparts, who favor a systemic approach that includes your psychological state, millennia of pre-modern medicine, use of Nature's own resources and a dose of modern science. The only thing that these two often mutually disparaging camps can agree on is that enzymes catalyze every single one of your body's biological functions, and without them, we could not live. 

But we've entered Act IV's battle without introducing its warriors - the enzymes themselves. 

Dr. Joseph Mercola, MD is a controversial character: his website garners as many new visitors per month (nearly 2 million) as that of the National Institutes of Health. He promotes alternative medicine therapies, and has been criticized and disparaged by business, regulatory and scientific communities across the board. He and another holist, Dr. Andrew Weil - more than any other American practitioners - provide a rare and powerful counter-perspective to the entrenched promotion of 'Big Pharma', and because of that alone, their research and advice are worth considering, if we value a broad perspective with respect to achieving optimal health. On both sides, as with anything, we must always separate efficacy from marketing, because politics or not, the body doesn't care who makes money. To that end, Dr. Mercola has an excellent primer on enzymes that is worth reading in full - linked here. Toward the end of his post, he draws conclusions about enzymes and health that are debated and debatable. But the information is excellent regardless, and I'll discuss some of the salient points below.

As mentioned earlier, enzymes are central to every one of the body's processes. Enzymes are first and foremost catalysts, spurring the processes that build raw materials, circulate nutrients, remove toxins, produce energy, break down fats, regulate hormones and slow down aging. There are three types: the first two, digestive and metabolic enzymes, are produced by the body (mostly in the pancreas, but also in the mouth and small intestine) to catalyze the processes within each system. Digestive enzymes break down food into nutrients your body can use, and metabolic enzymes run your metabolism, which is to say, your entire body, since these include your circulatory, cardiac, endocrine, neurologic, renal, lymphatic, hepatic and reproductive systems, in addition to your skin, bones, joints and muscle tissue. Put simply, enzymes are the work force that allows nutrients to reach their target, and to maintain the overall functionality of your body's systems. It's appropriate to mention here that Dr. Howell's most contentious assertion is that we are born with limited enzyme potential, meaning that we 'use up' the body's enzymes, and that once they are depleted, we cease to exist, because the body cannot function. He posits, therefore, that we must be parsimonious with our use of internal enzymes by relying on external enzymes (from foods, which we will discuss in a moment) to supplement and safeguard our internal supply. The notion of limited enzyme potential has been in no way proven, and is the focus of much passion-driven online ink and scientific debate. The fact is, we don't know. Dr. Howell presents compelling arguments. If you'd like, you can read some of them here (warning: it's on a website that sells supplements). If you want to 'geek out' and read a compelling set of counter-arguments - presented by the website 'beyond vegetarianism' - you can do so here. They, like many others, refute Howell's 'limited supply' theory and assert that the body produces what we need, without limit, and irrespective of how much we supplement our diets with external enzymes, triggering the other great enzyme debate.

That would be about the third and final type: food enzymes. These are the only enzymes our body does not produce but which we receive from external sources - the foods we eat. All raw plant and animal foods contain enzymes, as we humans do, in order to grow and function. So when we eat foods, we are by default introducing enzymes into our own digestive system. 

But.

There are other factors at play. We've seen in past weeks that some 90% of the foods that make up the average American diet are processed - i.e.: altered from their raw, natural state. Enzymes, as central as they are, are extremely fragile, and as such as prone to being 'denatured' - which means inactivated, and thus useless from a biological point of view. Several things decrease or destroy enzyme content (by which we mean active enzymes) in the foods we eat, with the two prime influences being heat and age.

Heat

Food enzymes are 100% denatured at 118°F (if wet heat) or 150°F (if dry heat). This applies to all foods, since heat is heat. Take one of our favorite subjects: pasteurization. As we discussed in Week 4, the US government strongly recommends this process (states have jurisdiction over regulation) in order to kill potentially harmful pathogens - aka bacteria - notwithstanding the fact that raw milk is naturally anti-microbial. In tests like those described here, when large amounts of pathogens are added to raw milk, it has been shown to kill them on its own. Pasteurization regulation, which requires milk products to be exposed to temperatures exceeding 160°F for 15 seconds, exists - if we are honest - because of the extreme pathogen-rich environment of industrial cattle factories, called CAFOs (Confined Animal Feeding Operations), where bacterial risks to cattle and human alike are rampant. Because of the festering conditions in which CAFO's raise and process beef, cattle are administered staggering amounts - 29 million pounds in 2009 alone - of antibiotics. This is a problem for two reasons: first, antibiotics denature enzymes. Second, and even more troubling, antibiotics wreak havoc on your gut's micro-biome. Your gut, as we'll discuss more below, is comprised of 100 trillion bacteria that control both your immune system (90% of which lives in your gut) and your overall health, via the nutrients that are released there and sent to your body's organs. For that reason more than any, we recommend that if you're going to eat red meat, you do so from animals that were raised hormone- and antibiotic-free (aka organic), and grass-fed (aka pastrure-raised). Not only are enzymes preserved, and risks lower, but nutrient content is far higher.

Beyond enzymes, no less than the CDC (Centers for Disease Control) wrote a paper on CAFOs, and on page 13 they state that people who live near them - to say nothing of the cattle inside of them - are subject to high risk of respiratory irritants, chronic lung disease, chemical burns to eyes, nose, throat and skin, olfactory neuron loss, bronchitis and even death. To say it again, pasteurization does not exist because raw milk is harmful, since most - if not all - raw milk enterprises pasture their animals - meaning, they graze outside on grass, in low densities and healthy physical environments, and thus the pathogens that pasteurization is supposed to mitigate are simply not present, enough to overcome dairy's own anti-microbial defenses. The regulations simply exist to mitigate the risk of raw milk produced in CAFOs that can be easily contaminated in these horrific environments. Thus most Americans are deprived from dairy in its most nutritious form, while in Europe, one can buy it in a vending machine, underlining starkly the preposterousness of the American position. Worse still, studies show that the majority of the 65% among us who have become lactose-sensitive or intolerant - over the past 50 years alone - have become that way because by pasteurizing and homogenizing dairy, we have killed enzymes like lactase that allow us to break down milk's lactose (sugars). In fact, the non-profit Weston A. Price Foundation (WAPF) conducted a survey in 2007 and found that among Michigan residents who had been diagnosed with lactose intolerance, 82% stated they could drink raw milk without a problem. Adding to the issue, the calcium in pasteurized milk is rendered insoluble by the fact that the enzyme phosphatase, which aids the absorption of calcium into our bones, is also denatured with heat. Further still, the lipase in raw milk that exists to help break down its fats is, like every other enzyme, deactivated with heat. And all this is to say nothing of pasteurization's effect on vitamin and mineral content in milk. For some reason, this article boasts that 'only' 20% of vitamins and minerals are lost through pasteurization. It goes on to add that the removal of milk's fat (i.e.: low- or no-fat) also leads to a loss of most or all of its vitamin A and D. Ah, well. We've used milk as an example of heat's impact on enzymes. The same holds true of all commonly pasteurized products: fruit juices, all dairy, vinegar, eggs, and almonds. Many of these are available in non-pasteurized versions. Needless to say, for reasons explained, we highly recommend you opt for the latter. Lastly, it is not only enzymes that suffer; vitamins A, B-complex (except B3), C, D and E are all diminished, or eliminated, by heat. 

But enough about dairy and pasteurization.

Digestive Enzymes

Digestion is initiated in the mouth, where a combination of food enzymes and salivary enzymes amylase and lipase initiate the process of digestion, on carbohydrates and fats, respectively. Once this pre-digested food enters our stomachs, hydrochloric acid catalyzes other enzymes, like pepsin, which begins the digestion of proteins. 1-2 hours later, food passes through the duodenum, which sits between our stomachs and our small intestines, where a flurry of enzymes of all types - protease (proteins), amylase (carbs) and lipase (fats) - that are produced in the pancreas mix with the digestive food slurry. The small intestine - which is alkaline - produces 90% of digestion, according to Dr. Mercola, and is where foods' 'micro-nutrients are absorbed into your bloodstream through millions of tiny villi in the wall of your gut'

Copyright FFFL

Copyright FFFL

Raw Foods

I mentioned enzymes are present only in raw foods. As we've seen, heat denatures / deactivates enzymes. This includes cooking, and is one reason some health professionals champion a raw food diet. They assert that raw foods are enzyme-rich, and consuming them decreases your body's burden to produce its own. Central to the argument is the fact that as we've seen, enzymes are used for every metabolic function in the body. When our enzymes are not being used to digest food, they are being applied toward other metabolic processes, like flushing toxins, repairing skin, bones and tissue, catalyzing the brain's activity, etc. etc. etc. Thus, as the theory goes, consuming enzymes externally, from raw foods or enzyme supplements, allows our bodies' own internal enzymes to 'build our house' and keep it clean - to borrow Dr. Howell's analogy. That is to say, the more enzymes you consume externally, the more you body's own enzymes can focus on repairing and maintaining itself, instead of digesting foods. Enzyme supplements, it should be noted, are often encapsulated in an enteric coating, which is a polymer that is immune to the stomach's acids, but releases them in the alkaline small intestine, where the majority of digestion occurs. So if you take them, make sure they are enteric-coated. Another area of concern is the universally accepted fact that enzyme production diminshes with age. This is due to the fact that the organs that produce enzymes age, the same way the rest of you does, and with it, their capacity for production. A good explanation on aging and enzyme production can be found here. Thus, as the enzymes' efficacy diminishes, a vicious cycle of aging acceleration occurs, since enzymes are key to the maintenance of our bodies' systems. If they can't do their job, the health of our systems declines, in a downward spiral. This line of thinking is consistent with the quote with which we began this post: 'when your body can no longer produce enzymes, then your life ends'. If so, then the addition of digestive enzymes gains an added importance as we age - as both a supplement and a prophylactic - as our own bodies begin to lose their ability to produce them naturally. Enzyme production peaks - and starts to diminish... at the tender age of 27.

So, science lesson aside, how do I get enzymes from foods?

Even within the world of raw foods, the amount and density of enzymes varies greatly. A good list of foods that are high in enzyme content is included here. Four of them - papayapineapplebananas and avocado - top everyone's list. Interestingly, they are also all tropical fruits. Sprouting is another food process that spurs enzyme content greatly in the host plant. We spoke briefly about sprouting in Week 12. Because of its relevance to this subject, I will re-post some of our own content here:

According to nutrition expert Dr. Mercola, young plant foods - called sprouts or shoots, and commonly referred to as 'raw' or 'living foods' - contain up to 100 times as many enzymes as adult plants, and up to 30 times the density of vitamins and essential fatty acids. Let's repeat that: up to 100 times the enzymes and 30 times the vitamins and fatty acids as the world's otherwise healthiest foods. This is why they are often referred to as miracle foods. In addition, according to Dr. Mercola, the nutrients in sprouts are often more bioavailable than those in adult plants, which means the body can more readily absorb them, instead of simply passing them through your system, unused. 

It's clear for a number of reasons that including sprouts in your diet is a good idea. From an enzyme perspective, it's hard to do better. Sprouted vegetables and grains can be found in farmer's markets around the country and in health food or health-minded groceries everywhere; and are far more varied than the alfalfa-blooming Chia Pet that may come to mind, if you're old enough to remember that fad. My own shopping cart regularly includes sprouted radish, pea shoot, broccoli, alfalfa and sunflower. Equally prevalent are sprouted mung beans, clover, wheat grass and lentils. Dr. Mercola has an excellent article on nutrient content in sprouts - and how to grow them yourself, for pennies.

Sprouted, whole-grain breads is another important source of enzymes. As we wrote in Week 8, this resource by the Whole Grains Council allows you to find whole grain breads in a searchable database, either to find good products or to see how the ones you use measure up. In general, we highly recommend replacing wheat breads (i.e.: any flour product) with their less processed counterpart. A good article by Weston A. Price on the effect of modern milling processes can be found here. In it, they discuss modern milling's destruction of a grain's most nutritious parts - the bran and the germ. This high-speed milling also heats the wheat to 400°F in the process, destroying nutrients like vitamin E. Before the advent of modern milling, bread was our most readily available source of vitamin E, according to to the article. By contrast, sprouted grains are especially valuable since beyond comprising whole grains, the act of sprouting lowers their gluten and starch content while preserving valuable enzymes and amino acids. These breads are often referred to as 'live' foods, and can be found easily in national grocery chains, in addition to specialty food shops - sometimes in the freezer section. A good resource that lists and grades sprouted grain-type breads is here

Fermented (Cultured) Foods

In a quasi-exception to the 'raw rule', enzymes are very much present in fermented (or cultured) foods. While these are often raw, they are nonetheless somewhat processed, insofar as they combine source foods to allow a natural catalytic process to induce fermentation. In fact, it is enzymes that cause fermentation, as discovered by German chemist Eduard Buechner, who in addition to being considered the founding father of biochemistry, his discoveries related to enzymes and fermentation won him a 1907 Nobel Prize. 

Fermented foods have the added benefit of being rich in probiotics - that is to say, they help regulate and normalize the micro-flora (aka 'good bacteria') among the 100 trillion (!) that inhabit your gut. It's widely believed - buoyed by strong and pervasive clinical evidence - that probiotic foods ease many of the digestive problems that so many people on enzyme-poor western diets experience. You need look no further than the yogurt, kefir, kimchi, sauerkraut, lassi and pickled cucumbers, beets, relishes and ginger in your supermarket - foods that were central to your grandparents' traditional diets. These fermented or 'live culture' foods are great sources of digestive enzymes, and have been intuitively used for centuries in cultures across the globe to palliate all manner of gastro-intestinal malaise. In fact, there are few traditional cultures where fermented products of some kind are not found. Commonly consumed as far back as Ancient Rome, Emperor Tiberius himself used to carry a barrel of sauerkraut with him on long voyages to the Middle East, since he (like many Romans) knew that the lactic acid it contained protected him from intestinal infections. 

Putting a modern spin on natural, historic fermented foods, now-widely available and hyper-trendy probiotics proliferate the high-end cold-pressed juice market. A daily $12 juice and $2 probiotic shot? Welcome to the world of the one percenters. But it works.

Nuts, Seeds, Grains and Legumes

Now for the bad news. Nuts, seeds and legumes are extremely important and dense sources of plant-based proteins, vitamins and minerals that are often rare in the plant world outside of these food groups. As such, we have encouraged you to include them in your diet in a number of posts. On the flip side, they also all contain significant enzyme inhibitors. As reported by FoodMatters here, enzyme inhibitors 'clog, warp or denature an active site of an enzyme' - not just those in raw foods, but those your body produces. They further explain that grains - rice, corn, bran, wheat and oats, chiefly - contain toxic phytates like phytic acid, which when present combine with calcium, zinc, magnesium, iron and copper to block their absorption, leading to serious mineral deficiencies and bone loss.

In all cases, with the exception of brown rice, soaking these foods neutralizes their enzyme inhibitors and eliminates the phytic acidAn added benefit to soaking, nuts, seeds and grains begin to germinate - that is, sprout - which carries the additional benefits we have already discussed above, increasing their density of vitamins (especially B-complex) and enzymes. Yet another added benefit to soaking is that gluten, to which so many people have a modern intolerance, is partially broken down, and thus easier to tolerate. So while we are used to soaking our oats overnight, and rinsing our rice, the practice of overnight soaking - in warm water - should be applied to the nuts and legumes (like beans) that we consume. The major difference is that in the case of nuts, grains and legumes, an acid like citrus or vinegar should be added to the soaking solution, to neutralize the phytic acid that blocks the body's absorption of minerals. A good Wikihow article on soaking is included here.

Cooking

One of the most controversial aspects of enzyme debate is what role cooked foods do and should play in your diet. It's a fact that enzymes die when heated. But there are other benefits to cooked food, in spite of nutrient density, which is often diminished with heat. Often, cooked foods are easier to digest, since heat is one way of breaking down foods' structure; in the case of bacteria and meats, it's necessary in all but the cleanest of sourcing and preparation techniques, like sushi. But there are other, non-scientific reasons to cook foods. Food, after all, is a culture; it's a social contract. Meals are planned, prepared, shared and savored with friends and family, creating common experiences and bonding us. At FFFL, we personally advocate a balance to pretty much everything, both in our attitudes and in our 'rules', which should be broken often enough not to become unbearable dogma. This includes a large dose of cooked meals - especially at dinner, which is often the most social meal of the day. The point here - always - is to make good choices in your selection and/or preparation of foods, but to eat in a way that is reasonable and realistic, because it'll be easier to maintain a diet if it is straightforward and satiates your palate. But cook healthy: use heart-healthy oils, like coconut (in high heat), olive (in medium or low/no heat), and walnut (without heat). Or use none at all, and steam vegetables, as we do near-nightly (broccoli, romanesco, cauliflower, snap or snow peas, green beans, etc...) We even steam our eggs, since learning that trick from our friends at Cook's Illustrated, here. Use oil in lieu of butter when cooking pasta or fish. Use spices liberally (with the exception of salt), which pack flavor and potent anti-oxidants, are easy to store, and are long-lived. Lastly, don't overcook your meals. Cooking animal products in particular at high heat have been shown to transform the animals' DNA into mutative carcinogenic amines and hydrocarbons, thus increasing your risk of cancer. The National Cancer Institute posted a good article on the subject, here

Packaged Foods

It should go without saying that cooked or not, packaged foods are a major no-no. We've posted in nearly every article about the extreme toll packaged foods take on your body, and so will not repeat the long list of illnesses and the disease that they promote. In Week 2, we introduced the context of Big Food; in Week 3, the modern diet and disease. In Week 7, how our food choices make us sick; in Week 8, food's relationship to a specific illness - cancer; and in Week 11 - GMOs. In all cases, packaged or processed foods are the the root cause of most modern illnesses, as we've discussed heavily. Thus unlike cooked whole foods, which - enzymes aside - can still deliver loads of nutrients, the packaged foods that comprise a staggering 90% of our collective food dollars have no place in our houses or bodies. 

One more censure: the modern food industry is driven by finance, not health; and the fact is that the two exist at opposite ends of the spectrum. Nature, on the other hand, is firmly in the camp of health, since we don't just depend on her, our 200,000-year-old biological systems (6 million, if you count our ancestors) exist because of it. 

Luckily, there is a dawning renaissance underway that is focused once again on true health, in spite of the near-monopoly of industrial farming.

Conclusions

Eat a healthy diet full of raw, unprocessed foods for a host of reasons, inclusive of their critical enzymes. Introduce foods that are enzyme-rich into your daily diet, like papaya, banana, avocado and pineapple. They're all full of key nutrients and carry health benefits beyond their enzyme potential. Buy - or make - sprouted vegetables, and make them part of your salads, snacks or garnishes. They're brimming with enzymes, which are naturally produced to protect the young plant. Replace your wheat breads with sprouted-grain breads, which are 'live' and often in the freezer section to preserve their enzymes and vitamins. Include fermented foods in your diet; they're easy to find, and are full of enzymes and enzyme-catalyzed probiotics / live cultures - delivering a boon to your guts, where the majority of digestion occurs, and where 90% of your immune system resides. Soak foods containing enzyme inhibitors: nuts, grains and legumes. And cook! But ensure you strike a dietary balance of raw and cooked foods, favoring the raw (or near-raw) and most minimally processed foods, as enzymes are delicate, prone to denaturing, and as we saw, critical to every facet of human biology. And if for some reason we need to say it again, avoid anything in a box, or with source ingredients you could neither pronounce nor point to in Nature.